
Noise-less Guarantees in Monte Carlo Path Tracing via

Conformal Prediction Methods

Maya Gambhir

January 3, 2026

Abstract

1 Introduction

Monte Carlo path tracing (MCPT) is a powerful rendering technique that simulates realistic light
transport in virtual environments. By tracing many light paths through a scene, MCPT can produce
photorealistic images with global illumination, soft shadows, reflections, and other complex lighting
effects. However, MCPT faces significant challenges in terms of convergence speed and noise reduction,
especially at low sample counts. As rendering high-quality images often requires thousands of samples
per pixel, there is a strong need for effective denoising techniques to produce clean results from noisy
MCPT renders.

This paper explores a novel approach to MCPT denoising using conformal prediction methods. Con-
formal prediction is a statistical framework for constructing prediction sets with guaranteed coverage
probabilities. By applying conformal prediction to MCPT sample data, we aim to develop an adaptive
sampling and denoising technique that provides rigorous uncertainty quantification. Our key idea is to
use partition learning conformal prediction (PLCP) to automatically identify informative subgroups
in the image based on local complexity. This allows us to adaptively determine the required number of
samples for each pixel to meet a specified noise threshold. The main contributions of this work are a
formulation of MCPT denoising as a conformal prediction problem, allowing for principled uncertainty
quantification and an adaptive sampling algorithm based on PLCP that learns to partition the image
into regions of similar complexity.

This paper is organized as follows:

1. A review of Monte Carlo Path Tracing

2. A review of Conformal Prediction

3. A description of other tools used in the final algorithm

4. A description of the algorithm

2 Monte Carlo Path Tracing

The TLDR of Path Tracing

MCPT involves simulating the projection of many samples of light rays around a virtual envi-
ronment to achieve a quality rendering, this can be sped up with deep learning techniques.
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2.1 What is it?

The basics of MCPT are quite simple. MCPT is a rendering technique that aims to, among other
things, simulate realistic light paths in virtual environments. The quantified definition of ”Realistic
Light” is grounded in the basics of physics, and represented by an equation discovered in 1986.

The Rendering Equation [1] denotes the spectral radiance of a wavelength λ directed outward
along direction ωo at time t, from a particular position x. It can be written as follows:

Lo(x, ωo) = Le(x, ωo) +

∫
Ω

fr(x, ωi, ωo)Li(x, ωi)(ωi · n)dωi

Where Lo is the outgoing radiance, Le is the emitted radiance, fr is the bidirectional reflectance
distribution function (BRDF), Li is the incoming radiance, ωi and ωo are the incoming and outgoing
directions, n is the surface normal, and Ω is the hemisphere of incoming light directions.

While this equation can be solved, it is time and compute intensive, so MCPT is employed to approx-
imate via sampling.

2.2 Paths & Path Tracing

What is a Path? A path is terminated by an eye E and a light L, and follows a series of bounces,
or interactions with surfaces, that are either transmissions or reflections along with some notion of
light scattering. MCPT follows an algorithm that involves repeated ray tracing through an initialized
virtual environment.

The Perquisites: The path tracing algorithm requires some base knowledge of the virtual environ-
ment to execute properly. [2]

1. The scene representation includes the 3D geometric objects, surface normals, surface materials
and light sources in the environment.

2. The camera model is a ”pinhole camera” placed at some location in the scene.

The Path Tracing Algorithm [2] is executed by repeatedly simulating the shooting of light rays
through the scene setup, redirecting the ray based on collisions with objects in the space, and finally
averaging the contribution of all rays to each pixel to get the final image. We write a simplified version
of the algorithm below.
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Algorithm 1: Monte Carlo Path Tracing (Simplified)

Input: Scene setup S, camera C, number of samples per pixel N
Output: Final rendered image I
Start with a blank image I with the same size as the camera’s view.
foreach pixel in the image do

Set the pixel’s color to zero.
for each sample out of N samples do

Create a random ray that passes through the pixel.
Initialize the light collected for this ray to zero.
Follow the ray through the scene:
while the ray hasn’t left the scene do

Find where it hits something.
if there’s no hit then

Add the background color and stop following the ray.

Add light emitted and decide the ray’s new direction based on material properties.

Add this ray’s contribution to the pixel’s color.

Average all the samples to get the final pixel color.

Return the completed image.

2.3 Utility

The value of such an algorithm comes from its ability to effectively simulate a variety of different
lighting effects including, but not limited to global illumination, soft shadows, color bleeding, caustics,
indirect lighting, diffuse and specular reflections, refractions. These are all lighting techniques that are
difficult to recreate by hand in applications such as animation.

The utility of this algorithm applies in any case where accurate rendering with more effective compute
resources is needed. This includes computer animation and visual effects rendering, MCPT is widely
employed for creating photorealistic imagery in movies and animations [3]. There are also a variety of
applications in game development, scientific visualization [3] and architectural visualization [4].

2.4 Challenges

Figure 1: An example of the results of MCPT for a given number of spp(samples per pixel) and its
corresponding compute time.

MCPT is, however, not without its challenges. Most notably, the algorithm faces problems of con-
vergence, noisy outputs, and high compute requirements (although it is faster than the alternative of
solving the rendering equation).

Convergence refers to the number of samples necessary to produce a useful and relatively noise free
output. Note that variance decreases with 1√

N
where N is the number of samples [5]. Since we are

looking for a noise free image, low variance is a direct measure of output quality. With this, the more
complex the lighting scenario, the more strict the acceptable bounds on variance become, as the user
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Figure 2: A second example of the results of MCPT for a given number of spp(samples per pixel) and
its corresponding compute time.

desires a complex, but clean final output. Balancing convergence speed and render time involves trade-
offs between image quality and computational efficiency. Faster renders may produce noisier results,
while achieving noise-free images often requires significantly longer render times. The randomness
in Monte Carlo integration leads to variance in light transport paths, resulting in grainy or speckled
appearances in the rendered image. This effect is especially noticeable when scattered rays don’t hit
light sources after multiple bounces. Note the two examples given in 3 and 2, both take over a minute
to converge to a reasonable output which could prove intractable with the introduction of many frames
and more complex environments.

2.5 ML in MCPT

Given the difficulties listed above, a variety of machine learning techniques can be employed to improve
the quality of outputs and the speed of convergence. Variations on CNNs take in a few noisy outputs
and denoise them into a noise free final image/rendering, whether it be through reinforcement learning,
auto-encoding or standard deep learning methodologies.

Supervised learning for denoising MCPT outputs A natural progression is to use employ deep
neural networks, or CNNs to denoise the images. Rather than the traditional method of approximating
the distribution via direct sampling and averaging to approximate the rendering equation, this method
[6], takes a series of under-sampled images and uses a neural network to approximate the noise free
version.

Reinforcement learning for Monte Carlo sampling An alternative method is to guide path
exploration via reinforcement learning methods [7]. This method assumes each ray has eight actions
at each bounce, and learns online to take the best action at each bounce. Such an implementation
noted specific speedup in convergence to a noise free image.

Generative models for enhancing image quality Another proposed method is reconstructing
noisy images via a recurrent auto-encoder [8]. This method considers a large pixel neighborhood in the
convolutional steps and introduces fully convolutional recurrent blocks after every encoding stage. The
auto-encoder aspect encodes relationships between pixels, and utilizes depth and normal information
without user guidance.

3 Conformal Prediction

The TLDR of Conformal Prediction

Conformal prediction is a statistical prediction method that aims to produce an uncertainty set
with marginal guarantees of correctness over the distribution of inputs.
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Figure 3: An example of how conformal prediction may do image classification via
https://ar5iv.labs.arxiv.org/html/2102.08898

3.1 What is conformal prediction?

Perhaps more closely related to course material is work on the statistical technique known as conformal
prediction. Note, the majority of this section is derived from the very thorough explanation of CP in
[9]. The aim of the conformal prediction process is to generate prediction sets on the outputs of any
given model that capture the correct value with some marginal probability guarantee. This is done by
calibrating a threshold for some heuristic score computed on each potential output.

3.1.1 The Standard Conformal Prediction Algorithm

Given some set of input output pairs (x, y) and a trained model M, steps 1-3 of the algorithm define
the calibration portion of CP. We first define some heuristic association between the input x and label
y. We then use this score, defined over all calibration examples, to calculate a quantile that will serve
as a threshold for future examples. The algorithm is formally outlined below.

Algorithm 2: Conformal Prediction

1: Input:
Pre-trained model M that predicts y given x
Calibration dataset {(X1, Y1), . . . , (Xn, Yn)}
Desired confidence level 1− α (α ∈ [0, 1])
New input Xtest to make predictions on

2: Define a score function s(x, y) such that higher scores indicate worse agreement between x and y.
3: Compute calibration scores for the given dataset:

si = s(Xi, Yi) for all i = 1, . . . , n
4: Compute the (1− α) quantile q̂:

q̂ = Quantile1−α(s1, . . . , sn)
Use the empirical distribution: q̂ is the ⌈(n+ 1)(1− α)⌉/n quantile.

5: For the test input Xtest, construct the prediction set:
C(Xtest) = {y : s(Xtest, y) ≤ q̂}
Interpretation: Include all y values for which the score function indicates sufficient

agreement with Xtest compared to the calibration threshold q̂.
6: Output: Prediction set C(Xtest) for the new test input

Correctness Guarantees Provided we meet the necessary preliminaries, which are outlined in the
theoretical section below, we get the following guarantee for a chosen factuality level α

P(Ytest ∈ C(Xtest)) ≥ 1− α,
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Predicting C on New Inputs We further outline the how to process a new input after calibration
is concluded. Given a threshold q, a new input x and a set of possible outputs y1, ..., yn, we calculate
s(x, yi)∀i ∈ [1, n] and include in C(Xtest) all yi such that s(x, yi) < q. Essentially, we threshold possible
outputs by our nonconformity metric, rejecting outputs that are extremely non conformal given what
we saw in calibration.

Heuristic Notions of Uncertainty There are a variety of uncertainty measures that can be defined
on (x, y) pairs. These score functions also often make use of M(x) and its proximity to the true label
y. Some simple methods include:

1. Residual-based: s(x, y) = |y − ŷ|, where ŷ = M(x)

2. Likelihood-based: s(x, y) = − logP (y|x), if M is probabilistic

Note that while the quality of the score function does not infringe on our statistical guarantees of
correctness it a poor heuristic does make for extremely large and relatively low-utility prediction sets.

3.2 Theoretical Analysis

One benefit of conformal prediction is that it relies on relatively weak distributional assumptions. The
method only requires exchangebility of the distribution of inputs, which is notably weaker than the
i.i.d. assumption. It also requires consistency of the scoring function, as use of the same threshold
throughout. We outline the main theoretical guarantee and its associated proof below.

3.2.1 Proof of Correctness Guarantee

Statement: Given exchangeable calibration data {(X1, Y1), . . . , (Xn, Yn)} and a test point (Xtest, Ytest),
the prediction set C(Xtest) constructed using conformal prediction satisfies:

P(Ytest ∈ C(Xtest)) ≥ 1− α,

where α ∈ [0, 1] is the significance level.

Proof. Let the score function s(X,Y ) assign a real-valued score that reflects the agreement between
X and Y . Assume we have n calibration examples {(Xi, Yi)}ni=1 and a test example (Xtest, Ytest), all
drawn exchangeably from the same distribution.

1. Exchangeable Scores: Under exchangeability, the scores s1, s2, . . . , sn, stest, where si = s(Xi, Yi)
and stest = s(Xtest, Ytest), are also exchangeable.

2. Quantile Definition: The prediction set C(Xtest) is defined as:

C(Xtest) = {y ∈ Y : s(Xtest, y) ≤ q̂},

where q̂ is the ⌈(n+ 1)(1− α)⌉/n quantile of the calibration scores s1, . . . , sn.

3. Coverage Analysis: To ensure Ytest ∈ C(Xtest), we need:

s(Xtest, Ytest) ≤ q̂.

Since the scores s1, s2, . . . , sn, stest are exchangeable, the rank of stest among all n+1 scores is uniformly
distributed:

P(rank(stest) ≤ ⌈(n+ 1)(1− α)⌉) = 1− α.

4. Key Insight: By construction, the quantile q̂ ensures that (1−α) proportion of the scores s1, . . . , sn
are less than or equal to q̂. Due to exchangeability, the same holds for stest. Thus:

P(stest ≤ q̂) ≥ 1− α.
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5. Final Coverage: Since stest ≤ q̂ implies Ytest ∈ C(Xtest), we conclude:

P(Ytest ∈ C(Xtest)) ≥ 1− α.

4 Applying Conformal Prediction to MCPT

4.1 Motivation

An interesting question that may arise in the process of MCPT analysis of the samples is: do all
pixels need the same number of samples? It is clear that in a given rendering some areas of
the image are much more complex than others, but classic sample collection techniques take the same
number of samples for each pixel.

4.2 A Formal Setup

In an effort to introduce conformal techniques into the monte carlo denoising process, we first formalize
our framework with Gharbi et al. [10]. Their methodology takes in an unordered set of MCPT samples
and use a splatting approach along with a neural network to output a denoised final image.

This problem is cast as a supervised learning problem, with the input being a set of noisy examples
for each pixel, with some contribution(to other pixel values) and additional features drawn from the
entire image. The actual network architecture is not central to our methodology. In fact, the only
thing we rely on is the per pixel analysis and computation on each pixel relative to the construction
of the final image.

4.3 Setting up our Toolbox

4.3.1 Measures of Complexity

Three important complexity measures for assessing pixel neighborhoods in Monte Carlo path tracing
are sample variance, perceptual variance, and gradient magnitude. These metrics provide valuable
information about the local complexity and uncertainty in rendered images.

Sample variance is a fundamental measure that quantifies the spread of sample values within a pixel
neighborhood. It was utilized in the Population Monte Carlo Path Tracing (PMC-PT) algorithm [11]
to adaptively allocate more samples to high-variance regions. For a pixel with N samples and radiance
values Li, the sample variance is calculated as:

Var(L) =
1

N − 1

N∑
i=1

(Li − L̄)2

where L̄ is the mean radiance. Higher variance indicates greater complexity and potential for noise,
making it useful for guiding adaptive sampling and denoising efforts. This measure is especially useful
when a scene has a variety of illumination levels or material properties. It also does well at identifying
extremely bright or dark outliers that result from sampling noise.

Perceptual variance extends the concept of sample variance by incorporating human perception
factors. The PMC-PT algorithm normalized sample variance using the threshold-versus-intensity
(TVI) function to account for the non-linear relationship between physical light intensity and perceived
brightness. This approach can be expressed as:

PerceptualVar(L) =
Var(L)

TVI(L̄)
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By adjusting for perceptual importance, this metric helps focus computational resources on areas
where noise is more noticeable to viewers, potentially improving the perceived quality of the final
image, performing well when we care more about the more visible noise in the image.

Gradient magnitude measures the rate of change in pixel values across the image, it is a common
metric in image processing and computer vision. For a 2D image with pixel values I(x, y), the gradient
magnitude can be approximated using finite differences:

GradMag(x, y) =

√(
∂I

∂x

)2

+

(
∂I

∂y

)2

High gradient magnitudes often correspond to edges, textures, or other visually important features. In
the context of Monte Carlo denoising, this metric can help identify regions that require more careful
treatment to preserve important details and edges and avoid over-smoothing.

4.3.2 Multi-calibration

Multi-calibration is an extension of traditional calibration methods that aims to address bias and
ensure fairness across multiple subgroups. One approach is to ensure the guarantees hold not only
marginally on the entire distribution, but on any set of groups that inputs in the distribution may
be a part of [12]. We can also expand on the exchangebility guarantee by dynamically adapting our
threshold in a sequential learning setup [13]. In our case, we require calibration across varying sample
sizes for a given pixel. If we did not calibrate on these groups, we would lose the exchangebility
assumption required to attain guarantees, as we are no longer drawing at random from the set of
inputs, but conditional on some current sample size.

4.3.3 Partition Learning Conformal Prediction

While group-wise guarantees are beneficial in conformal prediction, sometimes groups are not easy to
define. If we aim to calibrate our sample amount to the complexity of the area surrounding the pixel,
we need a way to turn complexity values into distinct features. Rather than choosing them arbitrarily
we can employ Partition Learning Conformal Prediction or PLCP [14]. The method described in the
paper constructs prediction sets for supervised learning tasks with enhanced conditional validity by
learning uncertainty-guided features from calibration data. It dynamically partitions the covariate
space into groups where prediction uncertainties are similar, improving upon traditional methods that
assume predefined structures or rely solely on marginal guarantees. PLCP leverages machine learning
models to learn these partitions, offering better conditional coverage, more precise prediction intervals,
and adaptability to complex datasets. The framework is computationally efficient and can handle both
regression and classification tasks while maintaining theoretical guarantees for both finite and infinite
sample sizes. While PLCP can partition the covariate space arbitrarily, we limit it to partition on the
complexity of a given pixel, allowing us to optimally use to complexity as an indicator of the needed
threshold. Additionally, this ensures that we do not just decrease overall, but on both complex and
simple areas of the image.

4.3.4 Imposing a Limit on Noise

Finally, to get guarantees of non-noisiness, we must impose an allowable limit of noise for the final
image that we output. Our measure of this is dependent on if we have the ideal denoised as part of
our calibration set.The ideal value to choose for a given situation is dependent on factors of the input
distribution and should be determined by the needs of the individual user.

If we know the ideal image we can use a simple measure like mean squared error or structural dissim-
ilarity [15]. If we do not know the ideal, we can refer again to the complexity measures above, which
do a good job at indicating noise across an entire image as well as in a given area.
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4.4 The Algorithm

Due to time constraints, I’ll describe the algorithm in more informal terms, leaving the formal definition
as an exercise for the reader. Just kidding, I’ll do it eventually just not right now (its due in 5 hours).

Algorithm 3: Threshold Calibration and Path Sampling with Conformal Prediction

Input: Set of images {I1, I2, . . . , In} with Monte Carlo paths {pij} for each pixel j in image Ii
Output: Threshold function τ(s, c) based on sample size s and complexity c
foreach image Ii ∈ {I1, I2, . . . , In} do

foreach pixel j in Ii do
Calculate group membership based on sample sizes sj and on complexity cj and PLCP.
Calculate the final sample size s∗j for pixel j.

Calibrate the threshold for every possible sample size seen, τ∗j = τ(s∗j , cj) for pixel j.

foreach pixel j in a new image Inew do
repeat

Sample paths {p(t)j } for pixel j.

if ŷ
(t)
j ≥ τ∗j then

Stop: Threshold τ∗j exceeded, prediction is valid.

if t > s∗j then
Stop: Sample size t exceeds maximum threshold, no unique threshold.

until

return Threshold function τ(s, c).

We also informally state that theoretical guarantees should follow from [14] as well.

5 Conclusion

In this paper, we presented a novel approach to Monte Carlo path tracing denoising using confor-
mal prediction methods. By formulating denoising as a conformal prediction problem and leveraging
partition learning techniques, we developed an adaptive sampling algorithm that can automatically
identify regions of varying complexity in rendered images. This allows our method to efficiently allocate
samples and provide rigorous uncertainty quantification.

While our method is an interesting idea, there are several avenues for future work. Clear future work is
the formalization of the algorithm and the associated theoretical guarantees that stem from the other
papers. Additionally, an implementation of this method would allow us to compare both runtime and
quality of outputs to alternative methods, notably the other machine learning applications described
in the section 2.

We can also include exploring more sophisticated partitioning strategies, incorporating additional
image features beyond simple complexity measures, and extending the approach to handle animated
sequences. Additionally, further investigation into the theoretical properties of PLCP in the context of
image data could yield insights for improving both efficiency and accuracy. Overall, this work represents
a step towards principled, adaptive denoising for Monte Carlo rendering. By bridging the gap between
statistical learning theory and computer graphics, we can give some mathematical formalization to the
sometimes more heuristic nature of image generatino and renderings.
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