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1 Introduction

As the study of sortition and its use in democratic deliberation becomes relevant and more closely studied,
an important barrier to research in this area becomes clear. Due to the personal and sensitive nature of the
data this work involves, data sharing in the field is limited to a select few researchers, making it difficult for
those without data access to make meaningful research progress and effectively test their algorithms. We
aim to construct a “data generator” that produces realistic sortition data that has provable guarantees of
both privacy, similarity to real data, and its ability to replicate algorithmic behavior.

Sortition objectives under consideration. We have six instances of pools and corresponding quota
sets to work from. Our current testing includes algorithms and objectives from the following papers:

1. LEXIMIN: maximizes the minimum selection probability given to any agent; if ties occur, it maximizes
the second-lowest probability, and so on

MINIMAX: minimizing the maximum selection probability
MAXIMIN: maximizing the minimum selection probability

NASH: maximizes the geometric mean of the selection probabilities
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Goldilocks: penalizes multiplicative deviations both above and below the average selection probability
(k/n). It aims to recover the best available trade-offs for both maximum and minimum probabilities
in a given instance

6. LEGACY (heuristic approach)

These metrics (barring the heuristic legacy approach) rely entirely on the spread of selection probabilities of
each volunteer for the final panel. This provide substantial motivation one of our key objectives, replicating
selection probabilities.

1.1 Problem Model (Sketch)

We model the target inputs and outputs of our algorithm below:

Input: A quota-pool pair (@, P) where Q defines a list of min and max quotas for each feature value and
P contains a particular set of features, with associated values, for each of n people.

Output (Q, P’) where (Q, P’) performs similarly to (Q, P) on target objectives. These target objectives
are often captured by min and max selection probabilities for each person. We also hope to replicate other
aspects of the ”real” pool such as uniqueness of each pool member, with their feature forming a vector.



Hypothesis If we can replicate both the mean rates of feature-value occurrence (relative to the quotas)
and the covariance/correlation between various feature-values then we can replicate the following aspects of
P

1. The spread/distribution of selection probabilities
2. The spread/distribution of unique feature-value vectors

We believe replicating these aspects of P’ will lead to approximation of how it performs on standard sortition
objectives.

Current Guiding Question: How can replicate the marginal probabilities of feature values as well as
their covariances?

2 Empirical Experiments

We completed a selection of empirical approaches to this problem, notably the simple baseline of directly
sampling pool members’ feature-values individually, using the marginal probability of a value v for each
feature. We find that replicating the marginals does replicate the selection probability distribution with
moderate success.

First we introduce some quick notation:

Quick Notation:
1. ry,. = fraction of P that has value v for feature f.

2. ¢((f1,v1), (f2,v2)) & ¢(f1, f2) denotes some measure of correlation between particular features or spe-
cific feature value pairs.

After completing empirical experiments on our chosen subset of sortition algorithms, we found that if we
replicate 7y, we decently approximate objective 1 (spread/distribution of selection probabilities). However,
we perform extremely poorly on objective 2 (Spread/distribution of unique feature-value vectors), which was
expected given the random and independent nature of the sampling approach.

2.0.1 Spread of selection probabilities

Below are plots that demonstrate the selection probabilities using both the original data and synthetic data
for minmax and nash objectives on one instance.
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2.1 Comparing vector multiplicities across instances

Now we consider our second objective, replicating vector multiplicity. The distribution of vector multiplicities
has a relatively consistent shape across our current instances. With a large amount of unique feature vectors,
and a longer tail of repeated, common feature vectors.
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As mentioned previously, our baseline performed poorly on replicating this spread of multiplicities. The
example below shows that there are far less unique feature vectores than previously.
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2.2 Additional Data Exploration
What do feature correlations look like? Weak but evidently important for replicating behavior.

What do clustering attempts reveal about the uniqueness of feature vectors? They are not very
effective to cluster, likely because of the large number of very unique vectors?

3 How do we create a distribution to draw from that replicates
correlations between features and their marginals?

Central Question Can replicating pairwise covariance and marginal frequency of feature-values in
synthetic data allow us to approximate the probability distribution and relative uniqueness of vectors
in the final pool?

3.1 How can we define covariance?

The key question is whether we are willing to define per feature-value correlations or want a more general
per-feature correlation, only the former works with standard covariance.

Option 1: Per-feature covariance matrices For each feature, for each unique pair of values those
features can take on, we calculate the covariance. This gives us a kt X n matrix where feature A has k
distinct values and feature B has n distinct values.

Option 2: Cramers V Provides a normalized measure of dependence between two features. Because the
raw chi-squared statistic scales with sample size and number of values for each feature, Cramér’s V rescales
it into a 0—1 effect size that is comparable across variables.




Where x?2 is the chi squared statistic and n, k are the number of values for each feature in the current pair.

Option 3: Mutual Information For two discrete variables X and Y with joint distribution p(x,y) and
marginals p(z) and p(y), the mutual information is defined as

106Y) = 3 Sotewn) 1og(p<x’y)) |

p(z)p(y)

This quantity captures how much knowing the value of one demographic attribute reduces uncertainty about
the other, with I(X;Y’) = 0 indicating independence and larger values reflecting stronger associations.

3.2 Methods for sampling with defined covariances

Gaussian-copula Sampling from a copulae allows you to produce multivariate samples based on a corre-
lation matrix and marginal distributions.

Inputs (Maringals and covariances): p;. = P(X; = ¢) for i € [1,F],c € [1,k;] for F features and k;
values for feature .

Covariances we have: Cov(X; = ¢, X; = d), but we need a fxf matrix form ideally for this approach. We
can also treat each value as an indicator of a separate feature. We want to sample vectors X € R? that
match the above statistics. We can then map each value to an interval on [0, 1] based on their marginal
probabilities. This lets us sample from a uniform distribution and end up with a categorical variable. We
get CDF of the categorical variable as below:

j
Fx,(c;) =Y Dicn
m=1

At a high level, the procedure as follows:
categorical — uniform — gaussian — gaussian + covariance — uniform — categorical

The theory states that adding the covariance matrix in and mapping back to uniform/categorical preserves
the correlations.

3.2.1 Discussions on copulae:

The approach is conceptually appealing because it cleanly separates marginal distributions from dependence
structure and naturally yields a generative model over full feature vectors. However, the theoretical guaran-
tees for categorical data remain unclear, as existing work appears to rely primarily on empirical justification
and warrants closer examination. There are also technical challenges in mapping discrete covariances to a
Gaussian correlation matrix and in ensuring that one-hot constraints are preserved after the transformations.

3.2.2 Related work (synthetic populations with copulae)

This paper uses aggregate data from m size d chunks of the population to construct a full m * d population.
They do this by calculating the aggregate statistics on indicators of each value (which gives a covariance
matrix and marginal rates/percentages of people having that value). I don’t think this paper in particular
provides solid theoretical guarantees, but the approach is motivated by existing theory.

3.3 Another idea: iterative proportional fitting

We start with a contingency table across features (values). The table is an f dimensional matrix where f is
the number of features. ”Scale up”, cycling through dimensions until we match our marginals. All pairwise
correlations are preserved, which gives exact covariances rather than approximate (although it is slower).
We can sample by treating each cell as a probability.


https://arxiv.org/pdf/1904.07998

Iterative Proportional Fitting (IPF) Outline:
We have a F dimensional matrix, where the jth dimension is the number of values that feature has.

Can this method synthesize across multiple matrices? Does it treat the draw of the pool that we see as a
draw from random generation? Currently, we belive the answer is no.

e Let p(x1,...,x,) be the joint probability table over n categorical variables.
e Suppose we are given target marginals or pairwise distributions, e.g. pi**®**(z;) or pz;rget(xi, zj).
e Initialize p(®) (x1,...,2,) (uniform or any positive table).

e Iterate until convergence:
p‘;arget (xz)
Zl‘fi p(t)(xlv s 7xn)

for each variable ¢ (or each pair (i,7) if fitting pairwise marginals), where x_; denotes all variables
except x;.

p(t“)(xl, cey Tp) = p(t)(xl, cey )

e Repeat the updates for all marginals iteratively until p(*) matches the target marginals within tolerance.

3.3.1 Discussions on IPF

IPF’s main strength is that it is a classical method with strong guarantees: when it converges, it exactly
matches specified marginals and preserves pairwise relationships. However, in high-dimensional settings it
becomes computationally heavy and is not naturally suited to serving as a generative model. This raises
open questions about its convergence behavior in our dimensional regime and about how to efficiently sample
full vectors from the resulting table. Overall, IPF is useful as a baseline or intermediate tool, but its scaling
issues and limited generative capability make it unlikely to be the final solution.

3.3.2 Related with IPF: Generating Synthetic Populations using Iterative Proportional F'it-
ting

The paper uses IPF to fuse two imperfect data sources: a detailed but small sample of people (the 5%
microdata) and coarse census tables that only give totals for each demographic category. IPF repeatedly
adjusts the sample’s joint distribution so that it lines up with the real census totals for age, sex, and later
each municipality, essentially “stretching” the sample to match what the full population must look like. After
aligning the data at the canton level, the authors run IPF again using each municipality’s own totals so that
every local area ends up with the right counts while keeping the overall correlation patterns from the sample.
They then draw individuals from this adjusted joint distribution to create a full synthetic population that
statistically mirrors the real one.

4 Next Steps

In the following semester we aim to create a formal mathematical model for sampling, and validate it on our
instances. There is more related work than originally anticipated on synthetic data generation (as described
above), so exploring this work, and its potential to inform our own model is important.


https://ethz.ch/content/dam/ethz/special-interest/baug/ivt/ivt-dam/vpl/reports/101-200/ab150.pdf
https://ethz.ch/content/dam/ethz/special-interest/baug/ivt/ivt-dam/vpl/reports/101-200/ab150.pdf
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